Improvement of Thioester Method by Using Pac Ester for Synthesis of Cyclopentapeptides

Mian LIU, Gui Ling TIAN, Yun Hua YE*

The Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871

Abstract: Thioester method was improved by using Pac (phenacyl group) ester as protecting group of 3-mercaptopropionic acid. Two cyclopentapeptides c(Ala-Tyr-Leu-Ala-Gly) and c(Pro-Tyr-Leu-Ala-Gly) were synthesized successfully by this method.

Keywords: Thioester method, Pac ester, cyclopentapeptide.

Thioester method was developed by Aimoto¹ and Tam² for peptides synthesis. In this method, the protected thioester was linked to a resin by solid-phase method. After elongation of the peptide chain, the peptide thioester was cyclized successfully on or off resin³. We extended the thioester method by using Pac (Pac=-CH₂COC₆H₅) ester as a protecting group of 3-mercaptopropionic acid. Two cyclopentapeptides, c(Ala-Tyr-Leu-Ala-Gly) and c(Pro-Tyr-Leu-Ala-Gly) were synthe-sized successfully by this method.

3-mercaptopropionic acid was used as a thioester group of Boc-Gly-OH. Boc-Gly-S- $CH_2CH_2COOH^1$ was reacted with 2-bromoacetophenone (PacBr) easily. The resulting thioester Boc-Gly-SCH₂CH₂COOPac was then elongated using DEPBT⁴ as a coupling reagent by solution method. The synthetic route was shown in **Scheme 1**. All of the compounds synthesized were identified by FAB-MS, ¹H NMR, elemental analysis *etc.*.

Physical constants of some linear peptides and their derivatives were shown in **Table 1**. The phenacyl group was removed with great facility at room temperature with zinc in 90% acetic acid⁵. After removal of Boc protecting group from N-terminal, two pentapeptide thioesters, H-Ala-Tyr-Leu-Ala-Gly-SCH₂CH₂COOH and H-Pro-Tyr-Leu-Ala-Gly-SCH₂CH₂COOH were obtained. Cyclization was carried out in 0.2 mol/L sodium acetate buffer from pH 4.6 to 5.8. Effects of different buffer pH, different concentration of silver ions on the cyclization yields were studied.

In summary, the protected amino acid thioester and peptide derivatives synthesized by the improved method, were easy to be purified, so the final linear peptides were pure enough for cyclization. The Pac group was easy to be removed from C-terminal.

^{*}E-mail: yhye@pku.edu.cn

Mian LIU et al.

$Scheme \ 1 \ Synthetic \ route \ of \ Boc-Ala \ (Pro)-Tyr-Leu-Ala-Gly-SCH_2CH_2COOPac$

DEPBT: 3-(diethoxyphosphoryloxy)-1, 2, 3 - benzotriazin - 4 (3H)-one

Table 1 Physical constants of some linear peptides and their derivatives⁶

No.	Compounds	Yield (%)	m.p.(°C)	FAB-MS*	$\left[\alpha \right]_{\mathrm{D}}^{^{20}}$
а	Boc-Gly-SCH2CH2COOH**	85	103-106	264	
b	Boc-Gly-SCH ₂ CH ₂ COOPac	85.3	73-73.5	382	
с	Boc-Ala-Gly-SR***	75.2	97.5-98.5	453	-12.3 (c 1, AcOEt)
d	Boc-Leu-Ala-Gly-SR	56.5	108.5-109	566	-20.8 (c 1, AcOEt)
e	Boc-Pro-Tyr-Leu-Ala-Gly-SR	50.8	132-135	826	-37.5 (c 1, MeOH)
f	Boc-Ala-Tyr-Leu-Ala-Gly-SR	44.6	127-130	800	-32.8 (c 1, MeOH)

* [M+H]⁺, ** Total yield from Boc-Gly-ONp, *** R=-CH₂CH₂COOPac, the following is the same.

Furthermore, this method is flexible for peptide chain elongation, either from C-terminal or N-terminal. It is also an efficient and practical method for synthesis of bioactive peptides, including cyclic peptides.

Acknowledgment

1060

The authors thank the National Natural Science Foundation of China (No. 29772001) for financial support and Professor Aimoto's helpful discussion.

References and Notes

- 1. H. Hojo, S. Aimoto, Bull. Chem. Soc. Jpn., 1991, 64, 111.
- 2. L. Zhang, J. P. Tam, J. Am. Chem. Soc., 1999, 121, 3311.
- 3. Y. Sun, G. S. Lu, J. P. Tam, Org. Lett., 2001, 3, 1681.
- 4. C. X. Fan, X. L. Hao, Y. H. Ye, Synth. Commun., 1996, 26, 1455.
- 5. J. B. Hendrickson, C. Kandall, Tetrahedron Lett., 1970, 5, 343.
- a. Lit^[1]: 104-106°C. b. Anal calcd for C₁₈H₂₃NO₆S: C 56.69, H 6.04, N 3.68. found: C 56.91, H 6.10, N 3.52. c. Anal calcd for C₂₁H₂₈N₂O₇S: C 55.75, H 6.19, N 6.19. found C 55.65, H 5.83, N 6.06. d. Anal calcd for C₂₇H₃₉N₃O₈S: C 57.34, H 6.90, N 7.43. found: C 57.32, H 6.88, N 7.28. e. Anal calcd for C₄₁H₅₅N₅O₁₁S: C 59.61, H 6.72, N 8.48. found: C 59.45, H 6.60, N 8.40. f. HRMS calcd for C₃₉H₅₃N₅O₁₁S 800.3540 (M+H)⁺, found 800.3522.

Received 22 February, 2002

R= -CH₂CH₂COOPac; Pac= -CH₂COC₆H₅